ブロック名:物質代謝(ブロック⑤)

月日	曜日	時限	授業タイトル		世当者 所属	授業終了後に説明できる事項	事前学習
12. 10	火	I	23. インスリンとグルカゴン による代謝の制御 (1) インスリンの構造・ 分泌・作用	鈴木 真奈絵	疾患 B M·標的分子制御学	1. インスリンの構造、作用、分泌、代謝への影響	教科書p. 395~p. 402の範囲の図を 読んでくること
"	IJ	П	" (2) グルカゴンの分泌・ 作用、低血糖	n	n	1. グルカゴンの分泌、作用、代謝への影響 2. 低血糖	教科書p. 403~p. 410の範囲の図を 読んでくること
"	IJ	Ш	26. 肥満	石井 聡	代謝・内分泌 内科	1. 肥満の定義と分類、合併する病態 2. 肥満の増加背景 3. 脂肪細胞の機能	教科書p. 448~p. 455の範囲の図を 読んでくること
12. 11	水	I	24. 摂食空腹サイクル(1) 摂食時の代謝	鈴木 真奈絵	疾患 B M· 標的分子制御学	1. 摂食時の代謝に関与する酵素の変化 2. 摂食時の肝臓、脂肪組織、骨格筋、脳のおける 代謝の概要	教科書p. 413~p. 420の範囲の図を読んでくること
11	IJ	П	" (2)空腹時の代謝	IJ	IJ	1. 空腹時の代謝における主要組織間の 相互関係	教科書p. 421~p. 430の範囲の図を 読んでくること
"	II	Ш	27. 栄養 食事摂取基準、 エネルギー必要量、 認容多量要素配分	植田 奈津美	難病治療研究 センター	1. 食事摂取基準 2. ヒトのエネルギー必要量と主要栄養素配分 3. 主要栄養素(食事性脂肪、食事性糖質、食事性 タンパク質)	教科書p. 456~p. 474の範囲の図を 読んでくること
12. 13	金	I	28. ビタミン (1) 総論・ビタミンB群 (チアミン・リボフラビン・ナイアシン・パントテン酸・ビオチン)	表山 和樹	生化学	 ビタミンの定義・水溶性ビタミンの性質 チアミン・リボフラビン・ナイアシン・パントテン酸・ビオチンの誘導体とその機能 チアミン・リボフラビン・ナイアシン・パントテン酸・ビオチンが欠乏する原因と欠乏症 	教科書9章・28章の図を読んで くること
11	IJ	П	" (2) ビタミンB群(葉酸・ コバラミン・ピリドキシン)・ ビタミンC	IJ	IJ	1. 葉酸・コバラミン・ピリドキシン・ビタミンC の誘導体とその機能 2. 葉酸・コバラミン・ピリドキシン・ビタミンC が欠乏する原因と欠乏症	教科書4章Ⅱ・20章・28章の図を 読んでくること
"	IJ	Ш	" (3) ビタミンA・ビタミンD・ ビタミンE・ビタミンK	IJ	n	 脂溶性ビタミンの性質 ビタミンA・ビタミンD・ビタミンE・ビタミンK の誘導体とその機能 ビタミンA・ビタミンD・ビタミンE・ビタミンK が欠乏する原因と欠乏症 	教科書28章の図を読んでくること