ブロック名:医系自然科学③

月	曜	時	授業タイトル	講義担当	á 者	授業終了後に説明できる事項	事前学習
日	日	限	18本/11/17	氏名	所属	以末が1以に助別くさるず次	尹刊士日
5. 7	火	I	生体分子⑤-1 ータンパク質:一次構造	末松 直也	化学	1. アミノ酸の構造的特徴と電気的性質 2. 標準アミノ酸 3. タンパク質の一次構造	教科書「生化学」の図1.1~図2.2を 読んでくる。
n	n	П	生体分子⑤-2 ータンパク質:立体構造と 機能	n	JJ	1. 分子の立体構造を保持する力の分類 2. タンパク質の立体構造:二次構造、三次構造、四次構造 造 3. 分子の立体構造の生理的重要性	教科書「生化学」の図2.6~図2.15を 読んでくる。
n	n	Ш	流体①-流体基礎	根本 幸雄	物理学	1. 静水圧とバスカルの原理 2. 浮力 3. 表面張力とラプラスの法則	圧力と力学①~③を復習しておく。
5. 8	水	I	生体分子⑤-3 - 球状タンパク質	末松 直也	化学	 球状タンパク質: ヘモグロビンと ミオグロビン ー構造と機能の共通点と相違点 異常ヘモグロビン症(鎌状赤血球貧血、サラセミア etc.) の発症機序 	教科書「生化学」の図3.1~図3.26を 読んでくる。
n	n	П	生体分子⑤-4 - 繊維状タンパク質	11	II	1. コラーゲンとエラスチンー構造と機能 2. コラーゲン異常症(エーラス・ダンロス症候群、 骨形成不全症)の発症機序 3. エラスチン分解亢進による異常症(肺気腫)の発症機 序	教科書「生化学」の図4.1~図4.15を 読んでくる。
n	n	Ш	流体②一流体の運動	根本 幸雄	物理学	 連続の式 ベルヌーイの定理 キャビテーション 	流体①と力学①~③を復習しておく。
5. 9	木	I	細胞骨格①-構造と 細胞内局在	東郷建	生物学	1. アクチンフィラメント、中間径フィラメント、 微小管の構造と細胞内局在 2. ミオシン、キネシン、ダイニンの構造 3. 細胞小器官の細胞内局在における細胞骨格の役割	事前配布資料に目を通しておくこと
n	n	П	細胞骨格②-細胞運動に おける役割	n	n.	1. 鞭毛・繊毛の役割 2. 鞭毛・繊毛の微細構造と運動の仕組み 3. 細胞移動における細胞骨格の役割	n
n	n	Ш	流体③一粘性,血流	根本 幸雄	物理学	 粘性率 ハーゲン・ポアズイユの法則 レイノルズ数と乱流 	流体①、②を復習しておく。
5. 10	金	I	電磁気①-電気回路	n	n	1. オームの法則 2. コンデンサーの容量性電流 3. 時定数	中学理科の直流回路を復習しておく。
IJ	"	п	電磁気②一静電気学	n	n	1. クーロンの法則 2. 電気双極子 3. 電気二重層	中学理科の静電気を復習しておく。
IJ	"	Ш	DNA複製と体細胞分裂	赤染 康久	生物学	1. DNA複製の概要 2. 体細胞分裂の過程 3. 体細胞分裂における細胞骨格の役割	1. 医系自然科学「生体分子③-核 酸」を復習しておく 2. 講義資料に目を通しておく
IJ	n,	IV	細胞接着	II	,,,	1. 代表的な細胞接着装置の特徴と機能 2. 代表的な組織における細胞接着	講義資料に目を通しておく
						i e e e e e e e e e e e e e e e e e e e	·